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A Dirac particle in a time-varying magnetic field 

0 Olendski 
Atomic and Molecular Engineering Laboratoty. Belarussian State University. Skorina 
Avenue 4, Minsk 220450, Belarus 

Received 6 January 1994 

Abstract A Dirac particle interaction with a uniform magnetic field B suddenly (by leaps) 
changing in time is donsidered theoretically. Characteristic features of the switching-an and 
switching-o8processes are derived; in particular, it is shown that aRer switchings there is 
no spin gip if the component of the kinetic momentum along the field is equal to zero. 
Generalizations to more than one switching are presented. Various results of calculations 
of the switching process from B,  +O to Bz#O are also presented. Limiting non-relativistic 
and ultrarelativistic cases are discussed. In the non-relativistic case, derived equations trans- 
form to earlier known results. Difficulties of the one-particle interpretation are shown. Some 
new results of the non-relativistic case are given in an appendix. 

In [ I ]  a non-relativistic spinless particle in a magnetic field suddenly (by leaps) changing 
in time was considered theoretically. Direct matching of the wavefunctions before and 
after switchings was utilized for deriving characteristic features of such processes?. Here 
we want to extend this investigation to a relativistic case; namely, we will solve a Dirac 
equation with a magnetic field suddenly changing in time. Exact solutions of the one- 
particle Dirac equation in miscellaneous configurations are of great theoretical interest, 
and various approaches to these problems have been proposed, one of the most promis- 
ing being the algebraic method of separation of variables proposed in [3] and developed 
in [4]. As was stressed in [I] ,  in our arrangement at the times of switching, an infinitely 
strong electric field is induced, and, therefore, the processes of creation and destruction 
of particles play important roles. However, we will neglect these phenomena and will 
confine our considerations to the one-particle theory only. Also, as will be shown below, 
for very strong magnetic fields the Dirac equation does not hold. This is due to the 
wavepacket localization in strong fields in a region of space comparable with the 
Compton wavelength. 

Let us start by considering the situation when a magnetic field B=(O,  0, B) is sud- 
denly switched on at the time t = O :  B( t )=Bh( l ) ,  where h(r) is the Heaviside step 
function. We choose the vector potential in the following Landau gauge: A =(O, Ex, 0). 
At  t < O  the particle is described by the wavefunction 

( s= - Ior t l )  (1) 

t See also [2] where, among others, one particular result of [ I ]  was obtained for a harmonic oscillator using 
the theory of explicitly time-dependent invariants. 
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where R ~ R ( p , , p y , p ~ ) = + ~ m ~ c 4 + c z p ~ + c 2 p ~ + c 2 p f , x o = p y / e B a n d  mois the rest mass 
of the particle. It is easy to check that bispinors 9s satisfy the orthonormality condition: 

9:9?=6Ss.. 

After switching, one gets superposition of the relativistic magnetic states [ 5 ] :  

where I s = - ,  m6=eE/mo,  and H.( E )  are Hermite polynomials. 
The functions xLy satisfy the equation 

m 
XlyX:? &= 6,,.8,.. (7) 

The factors lC,,,1* are probabilities of a finding particle in the magnetic state In, v ) ,  
and 

m c cIc,""12=1 s=*l .  
"10 " -+I  



A Dirac particle in a Limevarying magneticfield 5003 

Similar to [I] ,  matching the wavefunction at /=O, one obtains an expression for 

Four possible cases of s and v are given below: 

(i) s = + l ,  v = + l ,  

in 
c+ ].+I," = 

2JR(R + ~ o ~ ~ ) & + i n ( E + t n  +Macz) 

x [ ( R  t inocZ)(ctl. +moOP.+ c2pfP.+ A.cpXP.- I + iAncp,P.- I 1 
(ii) s = + l ,  v = - l ,  

(iii) s=-1, v=-1, 

+ A n t  ,cpXP.+ I + iA.+ IC&+ 11 
(iv) s=-1, v=+l .  

with 

A.=J=. 

It is immediately seen from equations (IO) that there is no spin flip if the component 
of the kinetic momentum along the field is equal to zero: 

c$s)"( p: = 0) = 0 S Z S ' .  (13) 

It follows from equations (lob) and (10d) that in the non-relativistic case there is also 
no spin flip. This justifies our neglect of spin in [I]. And. obviously, equations (loa) 
and (1Oc) transform in this case into equation (6) of [I]. 

Since the magnetic field acts perpendicularly to its direction, the most interesting 
case is when the y- and z-components of the kinetic momentum are zero. In  this case 

s = f l .  (14) 
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Once again we see that in the non-relativistic case (sun,  R w n o c 2 ) ,  equation (14) trans- 
forms to the result obtained earlier [ I ] :  

1 C,,(p: =py= 0 ; E,. , R ZHW?)~ = s=+l .  

In the opposite ultrarelativistic case (cvn,  R>>nzoc2) one gets 

(15) 

It is well known [6,7] that at strong fields the one-particle interpretation of the Dirac 
equation faces enormous difficulties. These difficulties will be shown below. 

It is easy to get a value for the average z-component of the spin ( o : ) ~  after switching: 

It is seen that in the non-relativistic case 

(u?>s=s(fi/2) s=*I ( 1 8 d  

(a:),=O. (186) 

as would be expected, and in the ultrarelativistic case 

Let us now consider the solution of the problem when the magnetic field B is 
switched off at t = O :  B(t)=Bh(-t) .  The wavefunctions are, at t<O, 

and, at t >  0, 

D,V,n(px) should obey the normalization condition: 

1 lDsp,n(~x)12 dpx= 1 p = + l  m=O, I , .  . . . (22) 
S - i l  -m 

Comparison of equations (9) and (21) shows that 

&"" = CZ", (23) 
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In the non-relativistic case, the integration in equation (20) with DSptn given by 
equation (21) may be performed in the closed form (see the appendix). However, at 
relativistic speeds there is no analytical expression for integrals in equation (20) in the 
literature [X-12]. 

Now we want to discuss the difficulties of the one-particle interpretation mentioned 
above. In the ultrarelativistic case (andpl=O) 

with Pm given by (11). Using the properties of Hermite polynomials, one gets 

[m I~,~m(p.)12dpx=ff:~. (24) 
< = * I  _ m  

Obviously, this is due to the negative energy states, which in the case E,. R > > i n d  
are of the same order as states with positive energies. Therefore, in the ultrarelativistic 
case after switchings one should take into account in equations (3) and (20) states with 
both positive (R,  E,) and negative (-R, -E"") energies. Equations (8) and (22) which 
areexact at the non-relativistic speeds (&, R%;moc2), are violated in theultrarelativistic 
case (eun,  R>>ma?). The larger the violation, the larger the probability of finding a 
particle in the state with negative energy. As is seen from equation (24), in the ultrarela- 
tivistic case the probability o f  finding a particle in the state with negative energy equals 
that for the states with positive energy. From a physical point of view, these transitions 
to negative energies are easily explained; namely, the electric field induced at the switch- 
ing moments helps the particle to tunnel through the energy gap between states with 
different signs of the energy. These difficulties are similar to the Zitterbewegung or 
Klein paradox [6,7]. 

In the same way, solutions are built for the case o f  more than one switching. 
For instance, if the magnetic field is switched on at t = O  and switched off at t = T  
(B( t )=B(h( t ) -h ( t -T) ) ) ,  then the wavefunction at f > T i s t  

with q$, given by equations (2) with replacement ofp, byp:.C,,(p,,p;) areexpressed as 

and 

t Obviously, after several switchings, transitions to the negative energy states are also possible. The probability 
of such a process for the uniform (non-space-dependent) vector potential A is described, for example, in 
[I31 
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If the magnetic field is switched off at /=0  and switched on again at r=T 
(B(r)=B(h(-t)+A(t- T))),thenthewavefunctionatr<Oisexpressedbyequation( 19), 
a t  0 < I  < T by equation (20), and at  I > Tby 

with 
m c c IC,,,,I2=l p = f l  m=O, I , .  . . (29) 

" - 0  "-*I 

In the non-relativistic case, equations (26), (27) and (30) transform to the corresponding 
equations (19), (20) and ( 2 3 ~ )  in [ I l t .  Comparison ofequations (26) and (30) shows a 
simple way for constructing solutions for the case of more than two switchings. 

The next problem we want to tackle is the process in which the magnetic field is sudd- 
enly changing from B, # 0 to B2 # O .  In this case the initial wavefunction is 

After switching ( 1  > 0) one gets 

Here 

Akj) = d s l  
rj=(fi /eBj)Ip XI= P Y l e 4  mi=eBi/mo j =  I ,  2. 

&; = +Jmk4 + $pz + n i o ~ f i q  (2n + 1 - v )  

t There are misprints in equations (191, (23a), (246) and (36) in [I]; namely, terms in the first exponents in 
these equations should have positive signs. 
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Similar to the previous cases 
m 1 1 Ic""pmIz= 1 p = * l  m = O ,  1, .  . . . 

" - 0  " - A I  

Matching solutions, one obtains 
m 

Cvnpm(B2,  Bi)=S_m X v n  (2)+ X p m  (1) dx. 

For four cases we get: 
(i) p=+1,  v = + l ,  

5007 

(34) 

(35) 

x (( &Im +we2)( .&+md)a, + l p f a ,  + A!?A!,!'a.- I )  (36a) 

(ii) p = + l ,  v=-1, 

X ( A ~ ! ~ ~ ~ . ~ + ~ - A ~ ~ ) ~ . - I . ~ ) .  

a ,  z an,,,(B2, BI) are known from the non-relativistic case [ 1 1  : 
m 

U,&, (x -xz) / r2 )um(r I ,  (x -x I ) /v I )  dw 

( 3 6 4  
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Once again it is seen that there is no spin flip (i) at p:=O and (ii) in the non- 
relativistic case: 

C"""h(PZ = 0) = 0 v # v' (384 

C""""(E"., E , m " m C 2 ) = 0  v # v'. (386) 

And, of course, in the non-relativistic case, equations (36a) and (36c) transform to the 
corresponding expression (31) in 111: 

C,.,.,.=an,.6,,,. (39) 
At pz=O it follows from equations (35a) and (3%) that 

A clear analogy with equation (14) is seen. Therefore, for the case El #O, B2#0 all 
properties discussed above will be valid also; namely, in the non-relativistic case, 

ICvnvm12=a:m (404 

and for the ultrarelativistic case 

As a final example, we consider the situation where BI = -B2= E .  The wavefunction 
at t < 0 is expressed by equation (1  9), and at I > 0 it is 

with ,yz)(x) being expressed by equations (4) with the opposite sign of xo. CVn,,>" are 



n 2 m  

m>n. 

(43) 

L:( 5 )  are Laguerre polynomials. 
From the properties of r,,," [l], it follows that at py=O there are no transitions: 

c".,m(py=o)=6,6n?". (44) 
This is explained by the fact that although relativistic considerations taking into account 
spin effects remove the degeneracy of the magnetic levels with respect to the field 
direction, some degeneracy remains: states In, T) and In- 1, 1) have the same energy 
(see equation (5)). 

Expressions for several switchings from one non-zero field to another are easily 
derived analogously to the procedure discussed above and in [I]. 

In conclusion, the non-relativistic treatment of [ I ]  has been extended in the present 
paper to a theoretical investigation of a Dirac particle interaction with a magnetic field 
suddenly changing in time; its characteristic features have been defined and the draw- 
backs of the one-particle interpretation pointed out. The next obvious step is to over- 
come these difficulties. However, this is a subject for special consideration. 
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Appendix 

We want to discuss here one interesting result of the switching-off procedure in the 
non-relativistic case which escaped our attention in [I]. If R, &,,.=in~c', then equations 
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(20) and (21) transform to equations (Al)  and (A2), respectively (we write the depend- 
ence on the variables x and t only), 

which are similar to equations (15) and (16) of [ I]. 

[9,11,12]t, one gets 
Substituting equation (A2) into equation (AI) and calculating the integral 

and 

= & ( r e N ,  (x--xO)/rd. (A41 

Therefore, we can stress that after switching off the magnetic field the particle 
remains in the state with the same number M. The centre of magnetic oscillations xo is 
also conserved. The magnetic radius, however, is now time-dependent (for convenience, 
below we have denoted the values of the magnetic field, magnetic radius and cyclotron 
frequency before switching as Bo, ro and mo, respectively): 

r,r(t) = r a m .  (A51 

It follows from equation (A5) that the 'instantaneous' value of the 'effective' mag- 
netic field is 

E " ( ~ ) = B ~ / ( I  +o:t2). (A61 

In some sense, we can say that although the magnetic field Bo suddenly vanishes at 
t=O, the parabolic potential well formed by it, does not disappear, but becomes more 
and more gently sloping, according to equation (A6), with the centre of the well being 
unchanged. This in a natural way explains the fact that after the subsequent switching 
on of the field at t =  T, transitions are possible only between states with the same parity 

Thus, after the sudden switching off of the magnetic field at 1=0 one can calculate 
the probability of finding a particle at the point x at time t >  0, using the usual expres- 
sions for the wavefunctions U,. in a uniform magnetic field (equation (6)) with the 
'effective' magnetic field and magnetic radius given by equations (A6) and (A5). 

t We want to point out a further two errors in [91; namely, equations (2.20.3.12) and (2.20.5.2) arc wrong. 
The corm3 forms of these integrals may be found from the corresponding equations in I l l ,  121. 

111. 
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